Sustainable Growth

Supplementary Cementitious Materials

By
James Ballan
Manager of Supplementary Cementitious Materials
What are SCM?
Supplementary Cementitious Materials

Substitution of clinker in cement by another material which has Cementitious properties
Global Cement Producers

Goals
- Providing environmentally friendly sustainable products
- Lower Fuel Consumption
- Lower Operating Costs
- Lower Capital Costs

Barriers
- Traditional methods have limitations

Usage
- Estimated 10-15% consists of SCMs
Limitations

Natural SCMs
- Limited quantities
- Regional variability

Synthetic SCMs
- Knowledge
- Experience
- Technology

Waste Materials
- Fluctuating chemistries
- Unwanted components
Fly Ash
Fly Ash
Clays - Kaolins

- Considerations
 - Wet “Lumpy” material
 - Specific temperatures
 - “Off-color” products
 - Inconsistent quality

- Traditional Technology
 - Inefficient cooling
 - Not evenly heated
 - Discoloration
Clays - Kaolins
Synthetic Pozzolan Productions

- Product
 - High pozzolonic activity
 - Color similar to cement
 - Lower fuel consumption
Advantages to This Approach

- Product quality allows for increased use of pozzolan in cement blends
- Color similar to cement
- Lower fuel consumption than existing methods
- Few moving parts – Lower Maintenance / Operating costs
- Compact design – less than 1500 m² footprint of Pyro Process Equipment
Further Implementations
Patent Pending
EFFECT OF DIFFERENT CALCINING PROCESSES

- Cement strengths after 28 days by substitute 30% of cement with limestone and calcined clay.
Side-By-Side

<table>
<thead>
<tr>
<th>Kiln</th>
<th>Calciner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment - $16 M USD</td>
<td>Equipment - $12 M USD</td>
</tr>
<tr>
<td>Installation - $16 M USD</td>
<td>Installation - $12 M USD</td>
</tr>
<tr>
<td>680 kcal/kg</td>
<td>640 kcal/kg</td>
</tr>
<tr>
<td>12 kw/t</td>
<td>15 kw/t</td>
</tr>
<tr>
<td>Maintenance - $3 per ton</td>
<td>Maintenance - <$1 per ton</td>
</tr>
<tr>
<td>20-25% Substitution</td>
<td>35-40% Substitution</td>
</tr>
<tr>
<td>18-24 months</td>
<td>15-18 months</td>
</tr>
<tr>
<td>ROI – 3.5 years</td>
<td>ROI – 2.5 years</td>
</tr>
</tbody>
</table>

The information contained or referenced in this presentation is confidential and proprietary to FLSmidth and is protected by copyright or trade secret laws.
CO₂ Reduction by Making Pozzolan Cement

Assume: 0.94 Kg CO₂/Kg Clinker, and 0.256 Kg CO₂/Kg Pozzolan

CO₂ OPC:

\[
0.94 \frac{\text{Kg CO₂}}{\text{Kg clinker}} \times 0.95 + 0.0 \frac{\text{Kg CO₂}}{\text{Kg clinker}} \times 0.05 = 0.893 \frac{\text{Kg CO₂}}{\text{Kg Cement}}
\]

CO₂ POZ:

\[
(0.256 \frac{\text{Kg CO₂}}{\text{Kg Pozzolan}} \times 0.4 + 0.94 \frac{\text{Kg CO₂}}{\text{Kg Clinker}} \times 0.6) \times 0.95 = 0.601 \frac{\text{Kg CO₂}}{\text{Kg Cement}}
\]
CO₂ Reduction by Making Pozzolan Cement
Assume: 0.94 Kg CO₂/Kg Clinker, and 0.256 Kg CO₂/Kg Pozzolan

CO₂ OPC:

\[\frac{0.94 \text{ Kg CO}_2}{\text{Kg Clinker}} \times 0.95 \quad \text{plus} \quad 0.0 \quad \frac{\text{Kg CO}_2}{\text{Kg Clinker}} \times 0.05 \]

A reduction of 33%

CO₂ POZ:

\[(\frac{0.256 \text{ Kg CO}_2}{\text{Kg Pozzolan}} \times 0.4) \quad \text{plus} \quad \frac{0.94 \text{ Kg CO}_2}{\text{Kg Clinker}} \times 0.6 \times 0.95 \]

= \[\frac{0.601 \text{ Kg CO}_2}{\text{Kg Cement}} \]

The information contained or referenced in this presentation is confidential and proprietary to FLSmidth and is protected by copyright or trade secret laws.
CO₂ Reduction by Making Pozzolan Cement

Assume: We use 700 Kcal/Kg Clinker in the process

Fuel Savings:

\[
\frac{700 \text{ Kcal}}{\text{Kg Clinker}} - \left(\frac{700 \text{ Kcal}}{\text{Kg Clinker}} \times 0.6 \right) + \frac{540 \text{ Kcal}}{\text{Kg Pozzolan}} \times 0.4
\]

= \frac{64 \text{ Kcal}}{\text{Kg Clinker}}

A savings of 9.1%
Direct Substitution

Strength Summary
30% Substitution

The information contained or referenced in this presentation is confidential and proprietary to FLSmidth and is protected by copyright or trade secret laws.
Blended Cements

- Clinker is engineered for Ordinary Portland Cement
- Blended Cement can mimic Ordinary Portland Cement
- High substitution rates require different parameters
- Optimization of physical and chemical properties required

Blended Cements ~ Ordinary Portland Cement
Pozzolan Testing

Laboratory Study – Synthetic Pozzolan

With the objective of identifying potential to produce a synthetic pozzolan from a given clay, FLSmidth will perform/provide the following:

- Sample Preparation
- Chemical and mineralogical characterization
- Physical testing
- Activation utilizing calciner process
- Color control of product
- Grinding and physical testing of synthetic pozzolan
 - Compressive strength testing at three substitution rates (20, 30 and 40%)
Concept / Advancement

- Mobile Plant
 - Pilot scale Pozzolan Calciner System
 - 5 MTPD capacity
 - Fully integrated / Self-sustainable (Plug-and-Play concept)
 - Simple set-up & operation

- Advantage
 - Hands-on experience
 - Product produced with available raw materials
 - Capacity to achieve consumers acceptance

- Investment
 - Weekly Rental - ~$45,000 USD
 - Investment credited to purchase of full-scale system
Proof of Concept
Thank You